top of page

Artificial Intelligence and Machine Learning

Price

NA

Duration

NA

Enroll

Modules

Module 1: Introduction to AI & ML
  • What is Artificial Intelligence?

  • Machine Learning vs Deep Learning vs Data Science

  • Real-world applications of AI/ML


Module 2: Python for AI/ML
  • Python basics, libraries (NumPy, Pandas, Matplotlib)

  • Data types, loops, functions, and OOP concepts

  • Data visualization with Seaborn & Matplotlib


Module 3: Basics of Statistics & Probability
  • Mean, median, mode, standard deviation

  • Probability distributions

  • Hypothesis testing & correlation


Module 4: Working with Jupyter Notebooks
  • Setting up and using Jupyter

  • Writing and running Python code interactively

  • Markdown and visualization in Jupyter


Module 5: Data Preprocessing & Cleaning
  • Handling missing values, outliers

  • Feature engineering and scaling techniques

  • Data encoding (label, one-hot)


Module 6: Supervised Learning Algorithms
  • Linear Regression, Logistic Regression

  • Decision Trees, Random Forest

  • K-Nearest Neighbors, Naive Bayes

  • Model evaluation (confusion matrix, accuracy, precision, recall, F1 score)


Module 7: Unsupervised Learning Algorithms
  • K-Means Clustering

  • Hierarchical Clustering

  • Dimensionality Reduction (PCA, t-SNE)


Module 8: Introduction to Deep Learning
  • Neural Networks basics

  • Activation functions, backpropagation

  • Using TensorFlow/Keras for simple models


Module 9: Model Deployment Basics
  • Saving and loading models

  • Creating APIs with Flask or FastAPI

  • Deployment to cloud (Heroku, AWS, Streamlit)


Module 10: Capstone Project
  • End-to-end ML project using real-world dataset

  • Data analysis, modeling, evaluation, and deployment

  • Final presentation and review

​

bottom of page